The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112652 a(n) squared is congruent to a(n) (mod 12). 5
 0, 1, 4, 9, 12, 13, 16, 21, 24, 25, 28, 33, 36, 37, 40, 45, 48, 49, 52, 57, 60, 61, 64, 69, 72, 73, 76, 81, 84, 85, 88, 93, 96, 97, 100, 105, 108, 109, 112, 117, 120, 121, 124, 129, 132, 133, 136, 141, 144, 145, 148, 153, 156, 157, 160, 165, 168, 169, 172, 177, 180 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Numbers m such that A000217(3*m)/2 + A000217(2*m)/3 is an integer. - Bruno Berselli, Jul 01 2016 LINKS Michael De Vlieger, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1). FORMULA From R. J. Mathar, Sep 25 2009: (Start) G.f.: x*(1 + 2*x + 3*x^2)/((x^2 + 1)*(x - 1)^2). a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4). a(n) = A087960(n) + 3*n - 1. (End) EXAMPLE a(3) = 9 because 9^2 = 81 = 6*12 + 9, hence 81 == 9 (mod 12). MAPLE m = 12 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n MATHEMATICA Select[Range[0, 180], Mod[#^2, 12] == Mod[#, 12] &] (* or *) CoefficientList[Series[x (1 + 2 x + 3 x^2)/((x^2 + 1) (x - 1)^2), {x, 0, 60}], x] (* Michael De Vlieger, Jul 01 2016 *) PROG (PARI) is(n)=(n^2-n)%12==0 \\ Charles R Greathouse IV, Oct 16 2015 CROSSREFS Cf. A000217, A087960. Sequence in context: A069219 A312848 A010413 * A272933 A243650 A140399 Adjacent sequences:  A112649 A112650 A112651 * A112653 A112654 A112655 KEYWORD nonn,easy AUTHOR Jeremy Gardiner, Dec 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 14:46 EDT 2020. Contains 334626 sequences. (Running on oeis4.)