This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112624 If p^b(p,n) is the highest power of the prime p dividing n, then a(n) = product_{p|n} b(p,n)!. 5
 1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 2, 1, 1, 1, 24, 1, 2, 1, 2, 1, 1, 1, 6, 2, 1, 6, 2, 1, 1, 1, 120, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 1, 24, 2, 2, 1, 2, 1, 6, 1, 6, 1, 1, 1, 2, 1, 1, 2, 720, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 2, 2, 1, 1, 1, 24, 24, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 120, 1, 2, 2, 4, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The logarithm of the Dirichlet series with the reciprocals of this sequence as coefficients, is the Dirichlet series with the characteristic function of primes A010051 as coefficients. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA From Antti Karttunen, May 29 2017: (Start) a(1) = 1 and for n > 1, a(n) = A000142(A067029(n)) * a(A028234(n)). a(n) = A246660(A156552(n)). (End) EXAMPLE 45 = 3^2 * 5^1. So a(45) = 2! * 1! = 2. MAPLE w := proc (n) options operator, arrow: op(2, ifactors(n)) end proc: a := proc (n) options operator, arrow: mul(factorial(w(n)[j][2]), j = 1 .. nops(w(n))) end proc: seq(a(n), n = 1 .. 101); # Emeric Deutsch, May 17 2012 MATHEMATICA f[n_] := Block[{fi = Last@Transpose@FactorInteger@n}, Times @@ (fi!)]; Array[f, 101] (* Robert G. Wilson v, Dec 27 2005 *) PROG (PARI) A112624(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= f[k, 2]!; ); m; } \\ Antti Karttunen, May 28 2017 (Sage) def A112624(n):     return mul(factorial(i) for i in [s[1] for s in list(factor(n))]) [A112624(i) for i in (1..101)]  # Peter Luschny, Jun 15 2013 (Scheme) (define (A112624 n) (if (= 1 n) n (* (A000142 (A067029 n)) (A112624 (A028234 n))))) ;; Antti Karttunen, May 29 2017 CROSSREFS For row > 1: a(n) = row products of A100995(A126988), when neglecting zero elements. Cf. A000142, A028234, A067029, A112622, A112623, A156552, A246660. Sequence in context: A060185 A129110 A257101 * A294875 A293902 A300830 Adjacent sequences:  A112621 A112622 A112623 * A112625 A112626 A112627 KEYWORD nonn,mult AUTHOR Leroy Quet, Dec 25 2005 EXTENSIONS More terms from Robert G. Wilson v, Dec 27 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 17:05 EDT 2018. Contains 313816 sequences. (Running on oeis4.)