login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112610 Number of representations of n as a sum of two squares and two triangular numbers. 15
1, 6, 13, 14, 18, 32, 31, 30, 48, 38, 42, 78, 57, 54, 80, 62, 84, 96, 74, 96, 121, 108, 90, 128, 98, 102, 192, 110, 114, 182, 133, 156, 176, 160, 138, 192, 180, 150, 234, 158, 192, 288, 183, 174, 240, 182, 228, 320, 194, 198, 272, 252, 240, 288, 256, 252, 403, 230 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also row sums of A239931, hence the sequence has a symmetric representation. - Omar E. Pol, Aug 30 2015

LINKS

Table of n, a(n) for n=0..57.

M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

FORMULA

a(n) = sigma(4n+1) where sigma(n) = A000203(n) is the sum of the divisors of n.

Euler transform of period 4 sequence [ 6, -8, 6, -4, ...]. - Michael Somos, Jul 04 2006

Expansion of q^(-1/4)eta^14(q^2)/(eta^6(q)eta^4(q^4)) in powers of q. - Michael Somos, Jul 04 2006

Expansion of psi(q)^2*phi(q)^2, i.e., convolution of A004018 and A008441 [Hirschhorn]. - R. J. Mathar, Mar 24 2011

EXAMPLE

a(1) = 6 since we can write 1 = 1^2 + 0^2 + 0 + 0 = (-1)^2 + 0^2 + 0 + 0 = 0^2 + 1^2 + 0 + 0 = 0^2 + (-1)^2 + 0 + 0 = 0^2 + 0^2 + 1 + 0 = 0^2 + 0^2 + 0 + 1

MATHEMATICA

Table[DivisorSigma[1, 4 n + 1], {n, 0, 57}] (* Michael De Vlieger, Aug 31 2015 *)

PROG

(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^14/eta(x+A)^6/eta(x^4+A)^4, n))} /* Michael Somos, Jul 04 2006 */

(MAGMA) [DivisorSigma(1, 4*n+1): n in [0..60]]; // Vincenzo Librandi, Sep 18 2015

CROSSREFS

Cf. A000203, A193553, A239052, A239053, A239931.

Sequence in context: A244535 A066826 A031113 * A100205 A140888 A053753

Adjacent sequences:  A112607 A112608 A112609 * A112611 A112612 A112613

KEYWORD

nonn

AUTHOR

James A. Sellers, Dec 21 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 00:45 EDT 2017. Contains 290855 sequences.