login
A112609
Number of representations of n as a sum of three times a triangular number and four times a triangular number.
14
1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
OFFSET
0,31
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
REFERENCES
M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = 1/2*( d_{1, 3}(8n+7) - d_{2, 3}(8n+7) ) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of phi(q^3) * psi(q^4) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 10 2008
Expansion of q^(-7/8) * (eta(q^6) * eta(q^8))^2 / (eta(q^3) * eta(q^4)) in powers of q. - Michael Somos, Mar 10 2008
Euler transform of period 24 sequence [ 0, 0, 1, 1, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1, 0, -1, 0, 1, 1, 0, 0, -2, ...]. - Michael Somos, Mar 10 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138270.
a(3*n+2) = 0.
EXAMPLE
a(30) = 2 since we can write 30 = 3*10 + 4*0 = 3*6 + 4*3
q^7 + q^31 + q^39 + q^63 + q^79 + q^103 + q^111 + q^127 + q^151 + ...
MATHEMATICA
A112609[n_] := SeriesCoefficient[(QPochhammer[q^6]*QPochhammer[q^8])^2/
(QPochhammer[q^3]*QPochhammer[q^4]), {q, 0, n}]; Table[A112609[n], {n, 0, 50}] (* G. C. Greubel, Sep 25 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, n=8*n+7; sumdiv(n, d, kronecker(-3, d))/2)} /* Michael Somos, Mar 10 2008 */
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^8 + A))^2 / (eta(x^3 + A) * eta(x^4 + A)), n))} /* Michael Somos, Mar 10 2008 */
CROSSREFS
A131962(n) = a(3*n). A112607(n) = a(3*n+1). A128617(n) = a(4*n+3).
A112605(2*n+1) = 2 * a(n). A112607(3*n+1) = a(n). A033762(4*n+3) = 2 * a(n). A112604(6*n+5) = 2 * a(n). A002324(8*n+7) = a(n). A123484(24*n+21) = 2 * a(n).
Sequence in context: A342419 A226350 A373898 * A134363 A054015 A375933
KEYWORD
nonn
AUTHOR
James A. Sellers, Dec 21 2005
STATUS
approved