login
A112605
Number of representations of n as a sum of a square and six times a triangular number.
24
1, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 1, 2, 0, 0, 4, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 3, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 4, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = d_{1, 3}(4n+3) - d_{2, 3}(4n+3) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of q^(-3/4)*eta(q^2)^5*eta(q^12)^2/(eta(q)^2*eta(q^4)^2*eta(q^6)) in powers of q. - Michael Somos, May 20 2006
Euler transform of period 12 sequence [ 2, -3, 2, -1, 2, -2, 2, -1, 2, -3, 2, -2, ...]. - Michael Somos, May 20 2006
a(n)=A002324(4n+3). - Michael Somos, May 20 2006
Expansion of phi(q)*psi(q^6) in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, May 20 2006, Sep 29 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A164273. - Michael Somos, Aug 11 2009
a(3*n + 2) = 0. - Michael Somos, Aug 11 2009
EXAMPLE
a(22) = 4 since we can write 22 = 4^2 + 6*1 = (-4)^2 + 6*1 = 2^2 + 6*3 = (-2)^2 + 6*3.
G.f. = 1 + 2*x + 2*x^4 + x^6 + 2*x^7 + 2*x^9 + 2*x^10 + 2*x^15 + 2*x^16 + ... - Michael Somos, Aug 11 2009
G.f. = q^3 + 2*q^7 + 2*q^19 + q^27 + 2*q^31 + 2*q^39 + 2*q^43 + 2*q^63 + ... - Michael Somos, Aug 11 2009
MATHEMATICA
a[n_] := DivisorSum[4n+3, KroneckerSymbol[-3, #]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
PROG
(PARI) {a(n) = if(n<0, 0, sumdiv(4*n+3, d, kronecker(-3, d)))}; /* Michael Somos, May 20 2006 */
(PARI) {a(n) = my(A); if(n<0, 0, A = x*O(x^n); polcoeff( eta(x^2+A)^5*eta(x^12+A)^2 / eta(x+A)^2 / eta(x^4+A)^2 / eta(x^6+A), n))}; /* Michael Somos, May 20 2006 */
CROSSREFS
A112608(n) = a(2*n). 2 * A112609(n) = a(2*n + 1). A112604(n) = a(3*n). 2 * A121361(n) = a(3*n + 1). A112606(n) = a(6*n). 2 * A131962(n) = a(6*n + 1). 2 * A112607(n) = a(6*n + 3). 2 * A131964(n) = a(6*n + 4). - Michael Somos, Aug 11 2009
Sequence in context: A344981 A161116 A262726 * A111775 A325166 A025844
KEYWORD
nonn
AUTHOR
James A. Sellers, Dec 21 2005
STATUS
approved