%I #12 Jun 23 2020 08:59:00
%S 1,1,1,1,2,1,1,3,4,1,1,4,7,6,1,1,5,13,13,10,1,1,6,21,28,19,12,1,1,7,
%T 31,61,61,27,18,1,1,8,43,96,125,88,39,22,1,1,9,57,169,241,261,133,49,
%U 30,1,1,10,73,232,505,546,421,208,63,34,1,1,11,91,361,785,1051,1171,605,313
%N Square array, read by ascending antidiagonals, where each row is a generalized Flavius Josephus sieve (A000960).
%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>
%e Table begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 2, 4, 6, 10, 12, 18, 22, 30, 34, ...
%e 1, 3, 7, 13, 19, 27, 39, 49, 63, 79, ...
%e 1, 4, 13, 28, 61, 88, 133, 208, 313, 364, ...
%e 1, 5, 21, 61, 125, 261, 421, 605, 1101, 1681, ...
%e 1, 6, 31, 96, 241, 546, 1171, 1776, 2761, 5046, ...
%e 1, 7, 43, 169, 505, 1051, 2527, 5083, 7729, 11635, ...
%e 1, 8, 57, 232, 785, 1800, 5041, 11096, 22737, 34504, ...
%e 1, 9, 73, 361, 1153, 3961, 8281, 20161, 43633, 95049, ...
%e 1, 10, 91, 460, 1981, 5950, 13951, 38080, 91081, 186130, ...
%e ...
%o (PARI) {T(n,k)=local(A=k,B=0,C=0);if(n==0||k==0,1, until(A==B,C=C+1;if(C%n==0,C=C+1);B=A;A=floor(A*(C+1)/C));1+A)}
%Y Cf. A002491 (row 1), A000960 (row 2), A112560 (row 3), A112561 (row 4), A112562 (row 5), A112563 (row 6), A112565 (main diagonal), A112568 (2nd diagonal), A112569 (antidiagonal sums).
%K nonn,tabl
%O 0,5
%A _Paul D. Hanna_, Oct 14 2005