Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 May 30 2018 13:44:08
%S 1,1,3,1,5,3,11,5,21,11,43,21,85,43,171,85,341,171,683,341,1365,683,
%T 2731,1365,5461,2731,10923,5461,21845,10923,43691,21845,87381,43691,
%U 174763,87381,349525,174763,699051,349525,1398101,699051,2796203,1398101,5592405
%N a(2*n) = A001045(n+2); a(2*n+1) = A001045(n+1).
%C Consider the Harmonacci sequence: H(1)=x, H(2)=y, H(3)=2xy/(x+y), H(4)=4xy/(3x+y)...; H(m) is the harmonic mean of H(m-1) and H(m-2). a(2n) and a(2n+1) are the denominator coefficients of H(n+3).
%H Colin Barker, <a href="/A112447/b112447.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,2).
%F a(n) = (a(n-1)+1)/2 for n=2, 6, 10...
%F a(n) = 4*a(n-1)-1 for n=3, 7, 11...
%F a(n) = (a(n-1)-1)/2 for n=4, 8, 12...
%F a(n) = 4*a(n-1)+1 for n=5, 9, 13....
%F From _Colin Barker_, Dec 15 2017: (Start)
%F G.f.: (1 + x + 2*x^2) / ((1 + x^2)*(1 - 2*x^2)).
%F a(n) = a(n-2) + 2*a(n-4) for n>3.
%F (End)
%t LinearRecurrence[{0,1,0,2},{1,1,3,1},50] (* _Harvey P. Dale_, May 30 2018 *)
%o (PARI) Vec((1 + x + 2*x^2) / ((1 + x^2)*(1 - 2*x^2)) + O(x^60)) \\ _Colin Barker_, Dec 15 2017
%Y Cf. A001045.
%K nonn,easy
%O 0,3
%A _Edwin F. Sampang_, Dec 12 2005
%E Edited by _Don Reble_, Jan 25 2006