This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112407 Decimal expansion of a semiprime analog of a Ramanujan formula. 3
 7, 5, 4, 4, 9, 9, 7, 0, 1, 7, 0, 9, 5, 1, 4, 0, 7, 8, 3, 5, 5, 7, 1, 8, 1, 6, 8, 9, 5, 0, 5, 4, 1, 9, 8, 7, 0, 2, 5, 0, 7, 7, 6, 4, 4, 3, 5, 8, 7, 2, 2, 3, 3, 8, 9, 0, 9, 9, 7, 9, 9, 1, 6, 4, 2, 8, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is related to Ramanujan's surprising formula: Prod[from n = 1 to infinity] (prime(n)^2 - 1)/ (prime(n)^2 + 1) = 2/5 and we use it in finding A112407 as the semiprime analog. We also use: A090986 = Decimal expansion of Pi csch Pi = Prod[from n = 2 to infinity] (n^2 - 1)/(n^2 + 1). Since every integer above 1 is a k-almost prime for some k, we factor the (n^2 - 1)/(n^2 + 1) infinite product and use Ramanujan's formula, to have: Prod[from n = 1 to infinity] (prime(n)^2-1)/(prime(n)^2+1) * Prod[from n = 1 to infinity] (semiprime(n)^2 - 1)/(semiprime(n)^2 + 1) * Prod[from n = 1 to infinity] (3-almostprime(n)^2 - 1)/ (3-almostprime(n)^2 + 1) * ... * Prod[from n = 1 to infinity] (k-almostprime(n)^2 - 1)/ (k-almostprime(n)^2 + 1) * ... = Prod[from n = 2 to infinity] (n^2 - 1)/(n^2 + 1) = pi csch pi as each integer appear once and only once in numerator and once and only once in denominator. 2/5 is the first (Ramanujan, prime) term in this infinite product of infinite products. This here is the second (semiprime) term. A155799 is the third (3-almost prime) term. All of these have slow convergence. REFERENCES Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004. LINKS Eric Weisstein's World of Mathematics, Infinite Product. Eric Weisstein's World of Mathematics, Hyperbolic Cosecant FORMULA Decimal expansion of a = prod[from n = 1 to infinity] (semiprime(n)^2 - 1)/(semiprime(n)^2 + 1) = prod[from n = 1 to infinity] (A001358(n)^2 - 1)/(A001358(n)^2 + 1). log a = -2*sum_{l=1..infinity} P_2(2*(2l-1))/(2l-1), where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900 [math.NT]. - R. J. Mathar, Jan 27 2009 EXAMPLE 0.75449970170951407835571816895054... MATHEMATICA Robert G. Wilson v: spQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; p = 1; Do[If[spQ[n], p = N[p*(n^2 - 1)/(n^2 + 1), 64]], {n, 10}]; p PROG (PARI) A(lim)=my(x=1.); forprime(p=2, lim\2, forprime(q=2, min(p, lim\p), x*=1-2/((p*q)^2+1))); x \\ Charles R Greathouse IV, Aug 15 2011 CROSSREFS Cf. A001358, A090986, A114529-A114536. Sequence in context: A066960 A061827 A273841 * A154195 A280870 A019858 Adjacent sequences:  A112404 A112405 A112406 * A112408 A112409 A112410 KEYWORD cons,nonn AUTHOR Jonathan Vos Post, Dec 21 2005 EXTENSIONS Edited and extended by R. J. Mathar, Jan 27 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 22:29 EST 2019. Contains 329850 sequences. (Running on oeis4.)