

A112375


Concatenation of base and exponent of prime powers.


2



21, 31, 22, 51, 71, 23, 32, 111, 131, 24, 171, 191, 231, 52, 33, 291, 311, 25, 371, 411, 431, 471, 72, 531, 591, 611, 26, 671, 711, 731, 791, 34, 831, 891, 971, 1011, 1031, 1071, 1091, 1131, 112, 53, 1271, 27, 1311, 1371, 1391, 1491, 1511, 1571, 1631, 1671
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If n = p^q, where p is prime and q > 0, then p concatenated with q is in the sequence.
Might be a good "puzzle" sequence  guess the rule given the first ten or so terms.


LINKS

Table of n, a(n) for n=1..52.


FORMULA

a(n) = A067599(A246655(n)) = A067599(A000961(n+1)).  M. F. Hasler, Mar 14 2018


EXAMPLE

n = 3 = 3^1, so (3 concatenated with 1) = 31 is a term.


PROG

(PARI) for(n=1, 300, fac=factor(n); if(matsize(fac)[1]==1, print1(eval(concat(Str(fac[1, 1]), Str(fac[1, 2]))), ", ")))


CROSSREFS

Cf. A112376, A064438, A067599.
Sequence in context: A116096 A116116 A079394 * A067599 A261322 A123846
Adjacent sequences: A112372 A112373 A112374 * A112376 A112377 A112378


KEYWORD

nonn,base


AUTHOR

Zak Seidov, Dec 04 2005


EXTENSIONS

Edited and extended by Klaus Brockhaus, Jan 21 2006


STATUS

approved



