login
A112360
Triangle read by rows: T(n,k) is the LCM of all C(n,k) integers from 1 + C(n,0) + C(n,1) + ... + C(n,k-1) to C(n,0) + C(n,1) + ... + C(n,k) (0 <= k <= n).
0
1, 1, 2, 1, 6, 4, 1, 12, 210, 8, 1, 60, 27720, 5460, 16, 1, 60, 720720, 13385572200, 3398220, 32, 1, 420, 232792560, 219060189739591200, 60218289392461200, 4076731260, 64, 1, 840, 2329089562800, 1182266884102822267511361600
OFFSET
0,3
COMMENTS
Column 1 yields A003418. a(n,n) = 2^n. - Emeric Deutsch, Feb 03 2006
EXAMPLE
Triangle begins:
1;
1, 2;
1, 6, 4;
1, 12, 210, 8;
1, 60, 27720, 5460, 16;
...
The row for n = 3 is
1....3..........3.......1
1 lcm(2*3*4) lcm(5*6*7) 8 ====> 1 12 210 8.
MAPLE
T:=proc(n, k) if n=0 and k=0 then 1 else lcm(seq(j, j=1+sum(binomial(n, i), i=0..k-1)..sum(binomial(n, i), i=0..k))) fi end: for n from 0 to 7 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form - Emeric Deutsch, Feb 03 2006
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Amarnath Murthy, Sep 07 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 03 2006
STATUS
approved