login
A112333
An invertible triangle of ratios of triple factorials.
6
1, 2, 1, 10, 5, 1, 80, 40, 8, 1, 880, 440, 88, 11, 1, 12320, 6160, 1232, 154, 14, 1, 209440, 104720, 20944, 2618, 238, 17, 1, 4188800, 2094400, 418880, 52360, 4760, 340, 20, 1, 96342400, 48171200, 9634240, 1204280, 109480, 7820, 460, 23, 1, 2504902400
OFFSET
0,2
COMMENTS
First column is A008544. Second column is A034000. Third column is A051605. As a square array read by antidiagonals, columns have e.g.f. (1/(1-3x)^(2/3)) * (1/(1-3x))^k.
FORMULA
Number triangle T(n, k)=if(k<=n, Product{k=1..n, 3k-1}/Product{j=1..k, 3j-1}, 0); T(n, k)=if(k<=n, 3^(n-k)*(n-1/3)!/(k-1/3)!, 0).
EXAMPLE
Triangle begins
1;
2, 1;
10, 5, 1;
80, 40, 8, 1;
880, 440, 88, 11, 1;
12320, 6160, 1232, 154, 14, 1;
Inverse triangle A112334 begins
1;
-2, 1;
0, -5, 1;
0, 0, -8, 1;
0, 0, 0, -11, 1;
0, 0, 0, 0, -14, 1;
0, 0, 0, 0, 0, -17, 1;
MAPLE
nmax:=8: for n from 0 to nmax do for k from 0 to n do if k<=n then T(n, k) := mul(3*k1-1, k1=1..n)/ mul(3*j-1, j=1..k) else T(n, k) := 0: fi: od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011, revised Nov 23 2012
CROSSREFS
Sequence in context: A121334 A126450 A235608 * A066868 A193900 A319373
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 04 2005
STATUS
approved