OFFSET
1,2
COMMENTS
Brenner proves that every prime divides some tribonacci number T(n). The Mathematica program computes similar sequences for any n-step Fibonacci sequence.
REFERENCES
Ed Pegg, Jr., Posting to Sequence Fan mailing list, Nov 30, 2005
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
J. L. Brenner, Linear Recurrence Relations, Amer. Math. Monthly, Vol. 61 (1954), 171-173.
Eric Weisstein's World of Mathematics, Tribonacci Number.
EXAMPLE
T(1), T(2), T(3), T(4), ... are 1,1,2,4,7,13,24,...; a(3) = 7 because 3 first divides T(7) = A000073(8) = 24.
MATHEMATICA
n=3; Table[a=Join[{1}, Table[0, {n-1}]]; k=0; While[k++; s=Mod[Plus@@a, i]; a=RotateLeft[a]; a[[n]]=s; s!=0]; k, {i, 100}] (* T. D. Noe *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 30 2005
STATUS
approved