This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112301 Expansion of (eta(q) * eta(q^16))^2 / (eta(q^2) * eta(q^8)) in powers of q. 3
 1, -2, 0, 0, 2, 0, 0, 0, 1, -4, 0, 0, 2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 3, -4, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, -6, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 1, -4, 0, 0, 4, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 2, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A10054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). LINKS Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Euler transform of period 16 sequence [ -2, -1, -2, -1, -2, -1, -2, 0, -2, -1, -2, -1, -2, -1, -2, -2, ...]. Multiplicative with a(2)=-2, a(2^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1+(-1)^e)/2 if p == 3 (mod 4). G.f.: Product_{k>0} (1-x^k)^2(1+x^(8k))^2(1+x^(2k))(1+x^(4k)). Expansion of q * phi(-q) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions. Expansion of (phi(-q^2)^2 - phi(-q)^2) / 4 in powers of q where phi() is a Ramanujan theta function. Moebius transform is period 16 sequence [ 1, -3, -1, 2, 1, 3, -1, 0, 1, -3, -1, -2, 1, 3, -1, 0, ...]. G.f. is a period 1 Fourier series that satisfies f(-1 / (16 t)) = 4 (t/i) f(t) where q = exp(2 pi i t). a(4n) = a(4n+3) = a(8n+6) = 0. a(8n+2) = -2 * a(4n+1). G.f.: Sum_{k>0} kronecker(-4, k) * x^k * (1 - x^k)^2 / (1 - x^(4*k)). EXAMPLE q - 2*q^2 + 2*q^5 + q^9 - 4*q^10 + 2*q^13 + 2*q^17 - 2*q^18 + 3*q^25 - ... PROG (PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( (eta(x+A)*eta(x^16+A))^2/(eta(x^2+A)*eta(x^8+A)), n))} (PARI) {a(n) = if( n>0 & (n+1)%4\2, (n%2*3 - 2) * sumdiv( n/gcd(n, 2), d, (-1)^(d\2)))} CROSSREFS -(-1)^n * A134013(n) = a(n). A008441(n) = a(4*n+1). A113407(n) = a(8*n+1). 2 * A053692(n) = a(8*n+5). Sequence in context: A185338 A208603 * A134013 A136521 A066448 A108497 Adjacent sequences:  A112298 A112299 A112300 * A112302 A112303 A112304 KEYWORD sign,mult AUTHOR Michael Somos, Sep 02 2005, Oct 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .