login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112299 Expansion of x * (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^8) in powers of x. 2
1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Periodic with period length 8.

Sum_{k>=1} a(k)/k = Pi/8. - Jaume Oliver Lafont, Oct 20 2009

LINKS

Table of n, a(n) for n=1..105.

M. Somos, Rational Function Multiplicative Coefficients

Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1,0,-1).

FORMULA

Euler transform of length 8 sequence [ -1, -1, -1, 0, 0, 0, 0, 1].

Multiplicative with a(2) = -1, a(2^e) = 0 if e>1, a(p^e) = 1 if p == 1 (mod 4), a(p^e) = (-1)^e if p == 3 (mod 4).

G.f.: x * (1 + x + x^2) * (1 - x)^2 / ((1 + x^2) * (1 + x^4)).

G.f.: f(x) - f(x^2) where f(x) := x / (1 + x^2). - Michael Somos, Jun 19 2015

a(n) = -a(4 - n) = a(n + 8) for all n in Z. a(4*n) = 0.

a(2*n) = - A056594(n-1). a(2*n + 1) = A033999(n). a(4*n + 1) = 1. a(4*n + 3) = -1. a(4*n + 2) = - A033999(n). - Michael Somos, Jun 19 2015

a(n) = A257196(n) unless n=0. - Michael Somos, Sep 01 2015

EXAMPLE

G.f. = x - x^2 - x^3 + x^5 + x^6 - x^7 + x^9 - x^10 - x^11 + x^13 + x^14 - x^15 + ...

MATHEMATICA

LinearRecurrence[{0, -1, 0, -1, 0, -1}, {1, -1, -1, 0, 1, 1}, 110] (* Harvey P. Dale, Dec 07 2014 *)

a[ n_] := { 1, -1, -1, 0, 1, 1, -1, 0}[[Mod[n, 8, 1]]];

PROG

(PARI) {a(n) = [ 0, 1, -1, -1, 0, 1, 1, -1][n%8 + 1]};

(PARI) {a(n) = [ 0, 1, -(-1)^(n\4), -1][n%4 + 1]}; /* Michael Somos, Jun 19 2015 */

CROSSREFS

Cf. A033999, A056594, A257196.

Sequence in context: A132350 A076213 A120525 * A014677 A175087 A127872

Adjacent sequences:  A112296 A112297 A112298 * A112300 A112301 A112302

KEYWORD

sign,mult,easy

AUTHOR

Michael Somos, Sep 02 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:32 EST 2017. Contains 295054 sequences.