login
A112291
Denominator of sum{k=1 to n} 1/S(n,k), where S(n,k) is a Stirling number of the second kind.
4
1, 1, 3, 42, 150, 36270, 270900, 9440379900, 3332912051700, 2004302168707167000, 1424191116445997823000, 3936008766237071969447818200, 10888542544398564939894000, 3606055788316324023953497288103040
OFFSET
1,3
LINKS
EXAMPLE
a(4) = 42, the denominator of 1/1 + 1/7 + 1/6 + 1 = 97/42.
The first few fractions are: 1, 2, 7/3, 97/42, 331/150, 77089/36270, 562609/270900.
MAPLE
with(combinat): a:=n->denom(sum(1/stirling2(n, k), k=1..n)): seq(a(n), n=1..15); # Emeric Deutsch, Sep 02 2005
MATHEMATICA
f[n_] := Sum[1/StirlingS2[n, k], {k, n}]; Table[Denominator[f[n]], {n, 15}] (* Ray Chandler, Sep 02 2005 *)
CROSSREFS
Cf. A112290.
Sequence in context: A237661 A116006 A079826 * A063040 A365594 A294517
KEYWORD
nonn,frac
AUTHOR
Leroy Quet, Sep 01 2005
EXTENSIONS
Extended by Emeric Deutsch and Ray Chandler, Sep 02 2005
STATUS
approved