login
Numbers m such that m mod floor(log_2(m)) > 0.
4

%I #12 Aug 31 2020 03:43:43

%S 5,7,8,10,11,13,14,17,18,19,21,22,23,25,26,27,29,30,31,32,33,34,36,37,

%T 38,39,41,42,43,44,46,47,48,49,51,52,53,54,56,57,58,59,61,62,63,64,65,

%U 67,68,69,70,71,73,74,75,76,77,79,80,81,82,83,85,86,87,88,89,91,92,93

%N Numbers m such that m mod floor(log_2(m)) > 0.

%C The asymptotic density of this sequence is 1 (Cooper and Kennedy, 1989). - _Amiram Eldar_, Jul 10 2020

%H Robert Israel, <a href="/A112250/b112250.txt">Table of n, a(n) for n = 1..10000</a>

%H Curtis N. Cooper and Robert E. Kennedy, <a href="http://www.jstor.org/stable/2323194">Chebyshev's inequality and natural density</a>, Amer. Math. Monthly, Vol. 96, No. 2 (1989), pp. 118-124.

%F A112248(a(n)) > 0.

%p seq(op(select(t -> t mod d > 0, [$2^d .. 2^(d+1)-1])),d=1..6); # _Robert Israel_, Aug 27 2020

%Y Complement of A112249.

%Y A112251 is a subsequence.

%Y Cf. A000523, A112248.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Aug 30 2005

%E Name changed by _Robert Israel_, Aug 27 2020