|
|
A112239
|
|
Matrix logarithm of triangle A111595.
|
|
2
|
|
|
0, 0, 0, 1, -2, 0, 3, 3, -6, 0, 12, 12, 6, -12, 0, 60, 60, 30, 10, -20, 0, 360, 360, 180, 60, 15, -30, 0, 2520, 2520, 1260, 420, 105, 21, -42, 0, 20160, 20160, 10080, 3360, 840, 168, 28, -56, 0, 181440, 181440, 90720, 30240, 7560, 1512, 252, 36, -72, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
A111595 is the triangle of coefficients of square of Hermite polynomials divided by 2^n with argument sqrt(x/2).
|
|
LINKS
|
Table of n, a(n) for n=0..54.
|
|
FORMULA
|
T(n, k) = n!/k!/2 for n-1>k>=0; T(k+1, k) = -k*(k+1), T(k, k) = 0 for k>=0.
|
|
EXAMPLE
|
Triangle begins:
0;
0,0;
1,-2,0;
3,3,-6,0;
12,12,6,-12,0;
60,60,30,10,-20,0;
360,360,180,60,15,-30,0;
2520,2520,1260,420,105,21,-42,0;
20160,20160,10080,3360,840,168,28,-56,0; ...
|
|
PROG
|
(PARI) T(n, k)=if(n<=k || k<0, 0, if(n-1==k, -k*(k+1), n!/k!/2))
|
|
CROSSREFS
|
Cf. A112239.
Sequence in context: A245332 A202035 A247508 * A298814 A021835 A112476
Adjacent sequences: A112236 A112237 A112238 * A112240 A112241 A112242
|
|
KEYWORD
|
sign,tabl
|
|
AUTHOR
|
Paul D. Hanna, Aug 29 2005
|
|
STATUS
|
approved
|
|
|
|