%I #10 Jun 28 2018 05:22:26
%S 1,-1,0,1,1,0,1,0,0,2,1,0,2,-1,0,2,0,0,3,0,0,4,1,0,4,-1,0,6,1,0,7,-2,
%T 0,8,2,0,10,-2,0,12,2,0,14,-2,0,16,1,0,19,-2,0,22,3,0,26,-2,0,30,3,0,
%U 35,-5,0,41,5,0,47,-4,0,54,5,0,62,-6,0,70,4,0,80,-4,0,92,7,0,104,-7,0,118,7,0,135
%N McKay-Thompson series of class 60c for the Monster group.
%H G. C. Greubel, <a href="/A112201/b112201.txt">Table of n, a(n) for n = 0..1000</a>
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Comm. Algebra 22, No. 13, 5175-5193 (1994).
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F Expansion of A - q/A, where A = q^(1/2)*(eta(q^6)*eta(q^15)/( eta(q^3)* eta(q^30))), in powers of q. - _G. C. Greubel_, Jun 28 2018
%e T60c = 1/q -q +q^5 +q^7 +q^11 +2*q^17 +q^19 +2*q^23 -q^25 +...
%t eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^6]*eta[q^15]/( eta[q^3]*eta[q^30])); a:= CoefficientList[Series[A - q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 28 2018 *)
%o (PARI) q='q+O('q^50); A = (eta(q^6)*eta(q^15)/( eta(q^3)* eta(q^30))); Vec(A - q/A) \\ _G. C. Greubel_, Jun 28 2018
%K sign
%O 0,10
%A _Michael Somos_, Aug 28 2005