login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112144 McKay-Thompson series of class 8a for the Monster group. 1

%I

%S 1,-20,-62,-216,-641,-1636,-3778,-8248,-17277,-34664,-66878,-125312,

%T -229252,-409676,-716420,-1230328,-2079227,-3460416,-5677816,-9198424,

%U -14729608,-23328520,-36567242,-56774712,-87369461,-133321908,-201825396,-303248408

%N McKay-Thompson series of class 8a for the Monster group.

%C The convolution square of this sequence is A107080, except for the constant term. - _G. A. Edgar_, Mar 22 2017

%H G. A. Edgar, <a href="/A112144/b112144.txt">Table of n, a(n) for n = 0..999</a>

%H D. Alexander, C. Cummins, J. McKay and C. Simons, <a href="http://oeis.org/A007242/a007242_1.pdf">Completely Replicable Functions</a>, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of q^(1/2) * (eta(q)^4 / eta(q^4)^4 - 4^2*eta(q^4)^4 / eta(q)^4) in powers of q. - _G. A. Edgar_, Mar 22 2017

%F a(n) ~ -exp(sqrt(2*n)*Pi) / (2^(5/4)*n^(3/4)). - _Vaclav Kotesovec_, Sep 08 2017

%e T8a = 1/q -20*q -62*q^3 -216*q^5 -641*q^7 -1636*q^9 -3778*q^11 +...

%t nmax = 50; CoefficientList[Series[Product[(1 - x^k)^4/(1 - x^(4*k))^4, {k, 1, nmax}] - 16*x*Product[(1 - x^(4*k))^4/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 08 2017 *)

%o (PARI) q='q+O('q^66); Vec((eta(q)^4 / eta(q^4)^4 - q*4^2*eta(q^4)^4 / eta(q)^4)) \\ _Joerg Arndt_, Mar 23 2017

%K sign

%O 0,2

%A _Michael Somos_, Aug 28 2005

%E More terms from _G. A. Edgar_, Mar 23 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 16 07:41 EST 2017. Contains 296076 sequences.