OFFSET
1,1
COMMENTS
Each term is a multiple of 70. The proof is straightforward. Example step showing k <> 3 (mod 7): If k==3 (mod 7), then (3^2)*k+1 == 9*3+1 == 0 (mod 7); i.e., for j=2 (3^j)*k+1 is never prime in this case. A corresponding j value with 0<=j<=7 can be found for each modulus (2,5,7) and nonzero residue such that (3^j)*k+1 is composite (a multiple of that modulus) so that only k == 0 (mod 2), k == 0 (mod 5) and k == 0 (mod 7) remain, hence k == 0 (mod 70). - Rick L. Shepherd, Sep 03 2005
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..500
MATHEMATICA
With[{c=3^Range[0, 7]}, Select[70*Range[3*10^7], AllTrue[1+c #, PrimeQ]&]] (* Harvey P. Dale, Sep 06 2023 *)
PROG
(PARI) forstep(k=70, 3*10^9, 70, j=0; while(isprime((3^j)*k+1), j++); if(j>=8, print1(k, ", "))); \\ Rick L. Shepherd, Sep 03 2005
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Aug 27 2005
EXTENSIONS
More terms from Rick L. Shepherd, Sep 03 2005
STATUS
approved