%I #6 Mar 12 2015 18:43:25
%S 1,1,-7,81,-1122,16906,-264109,4150081,-64119406,955386299,
%T -13491950523,178108552187,-2193288809125,25965294143459,
%U -320197330438145,4331428366450929,-54509980572007649,309687851858995853,8841175049606909354,-260481122023484957344,727627679068983588258
%N G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (9th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,9}, with B(0) = 0.
%e A(x) = x + x^2 - 7*x^3 + 81*x^4 - 1122*x^5 + 16906*x^6 +...
%e where A(A(A(A(A(A(A(A(A(x))))))))) =
%e x + 9*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 6*x^6 + 3*x^7 +...
%e is the g.f. of A112118.
%o (PARI) {a(n,m=9)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); return(polcoeff(F,n,x)))}
%Y Cf. A112118, A112104-A112117, A112120-A112127.
%K sign
%O 1,3
%A _Paul D. Hanna_, Aug 27 2005