This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112110 Unique sequence of numbers {1,2,3,4,5} where g.f. A(x) satisfies A(x) = B(B(B(B(B(x))))) (5-th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0. 3
 1, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 1, 1, 1, 5, 3, 1, 1, 5, 3, 4, 3, 2, 1, 5, 4, 1, 4, 1, 5, 1, 4, 5, 4, 2, 1, 5, 2, 5, 4, 5, 5, 4, 1, 1, 5, 4, 3, 5, 1, 5, 2, 2, 3, 1, 3, 2, 5, 2, 5, 3, 2, 3, 5, 2, 1, 2, 3, 1, 5, 1, 4, 5, 4, 3, 3, 2, 4, 2, 3, 4, 5, 2, 5, 5, 2, 4, 2, 3, 5, 3, 2, 4, 2, 2, 1, 1, 2, 3, 4, 5, 3, 3, 1, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE G.f.: A(x) = x + 5*x^2 + 5*x^3 + 5*x^4 + 5*x^5 + 5*x^6 +... then A(x) = B(B(B(B(B(x))))) where B(x) = x + x^2 - 3*x^3 + 17*x^4 - 115*x^5 + 841*x^6 +... is the g.f. of A112111. PROG (PARI) {a(n, m=5)=local(F=x+x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F-((polcoeff(G, k)-1)\m)*x^k); G=F+x*O(x^n); for(i=1, m-1, G=subst(F, x, G)); return(polcoeff(G, n, x)))} CROSSREFS Cf. A112111, A112104-A112109, A112112-A112127. Sequence in context: A083945 A125563 A093704 * A142864 A098598 A010716 Adjacent sequences:  A112107 A112108 A112109 * A112111 A112112 A112113 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 27 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 21 02:31 EDT 2013. Contains 225472 sequences.