|
|
A112050
|
|
Length of the longest prefix of 1's in the Jacobi-vector {J(2n+1,1),J(2n+1,2),...,J(2n+1,2n)}.
|
|
2
|
|
|
1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 6, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 10, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 12, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 4, 1, 1, 2, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..102.
|
|
FORMULA
|
a(n) = A112046(n) - 1.
|
|
MATHEMATICA
|
a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Table[a112046[n] - 1, {n, 102}] (* Indranil Ghosh, May 24 2017 *)
|
|
PROG
|
(Python)
from sympy import jacobi_symbol as J
def a112046(n):
i=1
while True:
if J(i, 2*n + 1)!=1: return i
else: i+=1
def a(n): return a112046(n) - 1
print [a(n) for n in range(1, 103)] # Indranil Ghosh, May 24 2017
|
|
CROSSREFS
|
Sequence in context: A112049 A055230 A290262 * A283156 A298231 A320473
Adjacent sequences: A112047 A112048 A112049 * A112051 A112052 A112053
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Antti Karttunen, Aug 27 2005
|
|
EXTENSIONS
|
Name clarified by Joerg Arndt, May 24 2017
|
|
STATUS
|
approved
|
|
|
|