OFFSET
1,2
COMMENTS
These integers also form a kind of prime with the a[2*n]/3 as a discriminant. dd = Flatten[Table[If[IntegerQ[a[2*n]/3] == True, Prime[n], {}], {n, 1, 200}]] 2, 3, 5, 7, 13, 17, 31, 67, 89, 97, 227, 239, 251, 257, 281, 293, 307, 311, 419, 421, 433, 439, 443, 449, 457, 461, 487, 521, 541, 547, 563, 569, 571, 577, 587, 593, 599, 607, 613, 617, 641, 643, 647, 653, 673, 743, 751, 769, 853, 857, 859, 863, 877, 881, 911, 919, 929, 947, 953, 967, 977, 983, 991, 997, 1009, 1031, 1039, 1063
FORMULA
a(0)=1/2 a(n) = a(n-1) + Prime[n]/2 if a[2*n]/3 is an Integer then aout=a[2*n]/3
MATHEMATICA
a[0] = 1/2; a[n_] := a[n] = a[n - 1] + Prime[n]/2 cc = Flatten[Table[If[IntegerQ[a[2*n]/3] == True, a[2*n]/3, {}], {n, 1, 200}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 28 2005
STATUS
approved