This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112033 3 * 2^(floor(n/2) + 1 + (-1)^n). 8
 12, 3, 24, 6, 48, 12, 96, 24, 192, 48, 384, 96, 768, 192, 1536, 384, 3072, 768, 6144, 1536, 12288, 3072, 24576, 6144, 49152, 12288, 98304, 24576, 196608, 49152, 393216, 98304, 786432, 196608, 1572864, 393216, 3145728, 786432, 6291456, 1572864 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES G. Polya and G. Szego, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..100 Index entries for linear recurrences with constant coefficients, signature (0,2) FORMULA a(n) = 1 / abs(A112031(n)/A112032(n) - 2/3) - old name. a(n) = 3*2^A084964(n) = 3*A112032(n). Recurrence: a(n) = 2a(n-2), a(0)=12, a(1)=3. G.f.: (6*x+24)/(1-2*x^2). - Ralf Stephan, Jul 16 2013 MAPLE A112033:=n->3*2^(floor(n/2) + 1 + (-1)^n); seq(A112033(k), k=0..50); # Wesley Ivan Hurt, Nov 01 2013 MATHEMATICA Table[3*2^(Floor[n/2] + 1 + (-1)^n), {n, 0, 50}] (* Wesley Ivan Hurt, Nov 01 2013 *) PROG (PARI) a(n) = 3 * 2^(n\2 + 1 + (-1)^n); \\ Michel Marcus, Nov 02 2013 CROSSREFS Cf. A112030. Sequence in context: A063609 A040139 A317312 * A248171 A258227 A130895 Adjacent sequences:  A112030 A112031 A112032 * A112034 A112035 A112036 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Aug 27 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 22:53 EST 2018. Contains 318157 sequences. (Running on oeis4.)