The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111997 Ninth convolution of Schroeder's (second problem) numbers A001003(n), n>=0. 1
 1, 9, 63, 399, 2403, 14067, 80949, 460845, 2605590, 14666470, 82320714, 461238282, 2581644378, 14442658074, 80785970838, 451934259654, 2528977211775, 14157983986839, 79302044283297, 444448115168049, 2492468172937125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA G.f.: ((1+x-sqrt(1-6*x+x^2))/(4*x))^9. a(n) = (9/n)*Sum_{k=1,..,n} binomial(n,k)*binomial(n+k+8,k-1). a(n) = 9*hypergeom([1-n, n+10], [2], -1), n>=1, a(0)=1. Recurrence: n*(n+9)*a(n) = (7*n^2+51*n+32)*a(n-1) - (7*n^2+33*n-22)*a(n-2) + (n-3)*(n+6)*a(n-3). - Vaclav Kotesovec, Oct 18 2012 a(n) ~ 9*sqrt(3*sqrt(2)-4)*(577-408*sqrt(2)) * (3+2*sqrt(2))^(n+9)/(64*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012 MATHEMATICA CoefficientList[Series[((1+x-Sqrt[1-6*x+x^2])/(4*x))^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *) PROG (PARI) x='x+O('x^50); Vec(((1+x-sqrt(1-6*x+x^2))/(4*x))^9) \\ G. C. Greubel, Mar 17 2017 CROSSREFS Ninth column of convolution triangle A011117. Sequence in context: A073378 A316461 A022733 * A016137 A230547 A201885 Adjacent sequences:  A111994 A111995 A111996 * A111998 A111999 A112000 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 12 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 22:55 EDT 2020. Contains 337346 sequences. (Running on oeis4.)