login
Numerator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^2)).
6

%I #16 Dec 25 2019 08:35:04

%S 1,5,19,79,443,463,3481,14029,44327,9067,103769,104693,1405361,

%T 1425953,7321957,29332873,510190361,515635801,9993116059,10039674571,

%U 10217040331,10301692171,240663600893,241109786633,1222682465581

%N Numerator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^2)).

%C Denominator of x(n) = A111930(n);

%C x(n) = a(n)/A111930(n) does not converge.

%D G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.

%H Robert Israel, <a href="/A111929/b111929.txt">Table of n, a(n) for n = 1..2296</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddPart.html">Odd Part</a>

%p map(numer, ListTools:-PartialSums([seq(1/k/2^padic:-ordp(k,2),k=1..100)])); # _Robert Israel_, Dec 28 2017

%t od[k_] := k/2^IntegerExponent[k, 2];

%t a[n_] := Sum[od[k]/k^2, {k, 1, n}] // Numerator;

%t Array[a, 25] (* _Jean-François Alcover_, Mar 08 2019 *)

%Y Cf. A000265, A111918, A111920, A111922, A111930.

%K nonn,frac

%O 1,2

%A _Reinhard Zumkeller_, Aug 21 2005