%I #14 Dec 27 2019 09:56:16
%S 1,32,2592,82944,51840000,17280000,41489280000,1327656960000,
%T 322620641280000,322620641280000,4723488808980480000,
%U 4723488808980480000,134907563873291489280000,134907563873291489280000
%N Denominator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^5)).
%C Numerator of x(n) = A111922(n);
%C lim_{n->infinity} x(n) = lim_{n->infinity} A111922(n)/a(n) = (Pi^4)/93 = 30*zeta(4)/31.
%D G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddPart.html">Odd Part</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>
%Y Cf. A000265, A013662, A111930, A111919, A111921, A111922.
%K nonn,frac
%O 1,2
%A _Reinhard Zumkeller_, Aug 21 2005