login
Numerator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^5)).
5

%I #10 Dec 26 2019 17:29:19

%S 1,33,2705,86641,54233569,18084523,43438219723,1390063548011,

%T 337834614646673,337850745678737,4946795388123668417,

%U 4946852336050088417,141291773058735555757937,141293528936024618797937

%N Numerator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^5)).

%C Denominator of x(n) = A111923(n);

%C x(n) = a(n)/A111923(n) -> (Pi^4)/93 = 30*zeta(4)/31.

%D G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddPart.html">Odd Part</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>

%e a(20) = 16405158877294964819100166210727563,

%e A111923(20) = 15663005949803936428703787909120000:

%e x(20) = a(20)/A111923(20) = 1.04738..., x(20)*31/30=1.08229....

%Y Cf. A000265, A013662, A111929, A111918, A111920, A111923.

%K nonn,frac

%O 1,2

%A _Reinhard Zumkeller_, Aug 21 2005