This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111900 Number of partitions of n into distinct squares of primes. 7
 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) <= 1 for n < 410. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..20000 Alois P. Heinz, Plot of the first 100000 terms FORMULA G.f.: Product_{k>=1} (1 + x^(prime(k)^2)). - Ilya Gutkovskiy, Dec 26 2016 EXAMPLE G.f. = 1 + x^4 + x^9 + x^13 + x^25 + x^29 + x^34 + x^38 + x^49 + x^53 + x^58 + x^62 + ... 410 = 7^2 + 19^2 = 11^2 + 17^2, therefore a(410)=2. MATHEMATICA nmax = 100; CoefficientList[Series[Product[1 + x^Prime[k]^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Ilya Gutkovskiy, Jun 15 2017 *) PROG (PARI) {a(n) = if(n < 0, 0, polcoeff( prod(k=1, primepi(sqrtint(n)), 1 + x^prime(k)^2 + x*O(x^n)), n))}; /* Michael Somos, Dec 26 2016 */ CROSSREFS Cf. A090677, A001248, A033461, A106244, A111902, A287965. Sequence in context: A016049 A015569 A015329 * A173860 A120524 A014177 Adjacent sequences:  A111897 A111898 A111899 * A111901 A111902 A111903 KEYWORD nonn,look AUTHOR Reinhard Zumkeller, Aug 20 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.