Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Jun 13 2017 22:36:43
%S 1,2,9,205,24901,16077987,58169810617,1226373476385199,
%T 154912862345527456431,119679779055077323244243580,
%U 574461679441277269788798742908435,17346328772332966415272910459727649244337,3328366331331467859745524303574824288197338547909
%N Number of partitions of 7^n into powers of 7, also equals the row sums of triangle A111830, which shifts columns left and up under matrix 7th power.
%H Alois P. Heinz, <a href="/A111832/b111832.txt">Table of n, a(n) for n = 0..28</a>
%F a(n) = [x^(7^n)] 1/Product_{j>=0}(1-x^(7^j)).
%o (PARI) a(n,q=7)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(sum(k=0,n,A[n+1,k+1])))
%Y Cf. A111830, A002577 (q=2), A078125 (q=3), A078537 (q=4), A111822 (q=5), A111827 (q=6), A111837 (q=8). Column 7 of A145515.
%K nonn
%O 0,2
%A _Gottfried Helms_ and _Paul D. Hanna_, Aug 22 2005