login
Triangle read by rows: for T(n,k), 1<=k<=n, gcd(k,n)=1, consider all representations of k/n as an Egyptian fraction; T(n,k) = minimal value of sum of denominators.
3

%I #8 Mar 31 2012 20:17:55

%S 1,2,3,8,4,6,5,18,12,17,6,5,7,32,39,16,23,36,8,12,10,14,9,24,12,20,17,

%T 23,10,15,7,20,11,72,48,36,47,24,35,95,72,60,12,10,7,12,13,98,71,82,

%U 95,101,28,41,47,58,71,96,14,21,34,9,34,41,15,32,16,21,8,23,13,15,16,24,20

%N Triangle read by rows: for T(n,k), 1<=k<=n, gcd(k,n)=1, consider all representations of k/n as an Egyptian fraction; T(n,k) = minimal value of sum of denominators.

%C Comment from David Wasserman, Mar 03 2009: Row n has A000010(n) members.

%D Franklin T. Adams-Watters, Posting to Seq Fan mailing list, Aug 21 2004

%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>

%e Triangle begins:

%e 1

%e 2

%e 3 8

%e 4 6

%e 5 18 12 17

%e 6 5

%e 7 32 39 16 23 36

%e 8 12 10 14

%e 9 24 12 20 17 23

%e 10 15 7 20

%e 11 72 48 36 47 24 35 95 72 60

%e 12 10 7 12

%Y Cf. A097847, A097848, A097849, A111807, A111804, A111860.

%K nonn,tabf

%O 1,2

%A _N. J. A. Sloane_, based on communications from _Franklin T. Adams-Watters_, Nov 22 2005

%E Corrected and extended by _David Wasserman_, Mar 03 2009

%E T(15, 14) corrected by _David Wasserman_, Mar 19 2009