

A111668


Primes p such that p1 has a prime factor > sqrt(p1).


1



3, 7, 11, 23, 29, 43, 47, 53, 59, 67, 79, 83, 89, 103, 107, 131, 137, 139, 149, 157, 167, 173, 179, 191, 223, 227, 229, 233, 239, 263, 269, 277, 283, 293, 311, 317, 347, 349, 359, 367, 373, 383, 389, 431, 439, 461, 467, 479, 499, 503, 509, 523, 557, 563, 569
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Alternatively, primes of the form m*x+1 where x>0 is an integer, m is a prime and m>x.  Frank M Jackson, Nov 27 2015
{a(n)1, n>=0} is a subsequence of A064052.


LINKS

Table of n, a(n) for n=1..55.


EXAMPLE

67 is a term as 67 is prime and 671 = 66 = 2*3*11 has prime factor 11 > sqrt(66) = 8.1240....


MATHEMATICA

Reap[For[p = 3, p < Prime[120], p = NextPrime[p], f = FactorInteger[p1][[1, 1]]; If[f > Sqrt[p], Sow[p]]]][[2, 1]] (* JeanFrançois Alcover, Jan 12 2015 *)


PROG

(PARI) forprime(p=3, prime(100), f=factor(p1); sz=matsize(f)[1]; if(f[sz, 1]>sqrt(p1), print1(p, ", ")))


CROSSREFS

Cf. A064052.
Sequence in context: A187270 A187271 A187106 * A112038 A097452 A086505
Adjacent sequences: A111665 A111666 A111667 * A111669 A111670 A111671


KEYWORD

nonn


AUTHOR

Rick L. Shepherd, Aug 14 2005


STATUS

approved



