The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111666 Expansion of (-2+3*x+3*x^2+4*x^3+3*x^4-5*x^5)/((x-1)*(x+1)*(1+x^2)*(x^2-3*x+1)). 4
 2, 3, 4, 5, 10, 27, 68, 173, 450, 1179, 3084, 8069, 21122, 55299, 144772, 379013, 992266, 2597787, 6801092, 17805485, 46615362, 122040603, 319506444, 836478725, 2189929730, 5733310467, 15010001668, 39296694533, 102880081930 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3, -1, 0, 1, -3, 1). FORMULA a(0)=2, a(1)=3, a(2)=4, a(3)=5, a(4)=10, a(5)=27, a(n)=3*a(n-1)-a(n-2)+ a(n-4)- 3*a(n-5)+a(n-6). - Harvey P. Dale, Jan 24 2015 MATHEMATICA CoefficientList[Series[(-2+3x+3x^2+4x^3+3x^4-5x^5)/((x-1)(x+1)(1+x^2)(x^2-3x+1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, -1, 0, 1, -3, 1}, {2, 3, 4, 5, 10, 27}, 30] (* Harvey P. Dale, Jan 24 2015 *) PROG Floretion Algebra Multiplication Program, FAMP Code: vessumseq[ + .25'i + .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e], sumtype: Y[15], inty[ * ] CROSSREFS Cf. A111664, A111665. Sequence in context: A306108 A282033 A111665 * A080475 A247233 A329906 Adjacent sequences:  A111663 A111664 A111665 * A111667 A111668 A111669 KEYWORD easy,nonn AUTHOR Creighton Dement, Aug 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 06:11 EST 2020. Contains 338781 sequences. (Running on oeis4.)