OFFSET
0,4
COMMENTS
Initial terms factored: [0,0,1,2,(2)^2,(3)^2,(2) (3)^2,(2)^2 (3)^2,(2)^3 (3)^2,(2)^4 (3)^2,(2)^5 (3)^2,(2)^6 (3)^2,(2)^7 (3)^2,(2)^8 (3)^2,(2) (5) (461),(2)^2 (5) (461),(2)^3 (5) (461),(2) (3)^3 (683),(2)^2 (3)^3 (683),(2)^3 (3)^3 (683),(2)^4 (3)^3 (683),(2)^5 (3)^3 (683),(2)^6 (3)^3 (683),(2) (5)^2 (17) (2777),(2)^2 (5)^2 (17) (2777),(2)^3 (5)^2 (17) (2777),(2) (7) (19) (70991),(2)^2 (7) (19) (70991),(2)^3 (7) (19) (70991),(2)^2 (3)^2 (11) (381487)]
Note that for each 3 terms in a row the sequence doubles: a(3*n+1) = 2*a(3*n) = 4*a(3*n-1). Andrew Howroyd, Mar 09 2024
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseksumseq[.5'i + .5i' + .5'ii' + .5'jj' + .5'kk' + .5e], sumtype: sum[(Y[0], Y[1], Y[2]),mod(3)
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,1,-2,0,-1,2,0,2,-4).
FORMULA
a(n) = 2*a(n-1) + a(n-3) - 2*a(n-4) - a(n-6) + 2*a(n-7) + 2*a(n-9) - 4*a(n-10) for n>11. - Colin Barker, May 11 2019
MATHEMATICA
CoefficientList[Series[x^2*(1 - x)*(x^2 + x + 1)*(x^6 + x^3 + 1)/((2*x - 1)*(2*x^9 - x^6 + x^3 - 1)), {x, 0, 50}], x] (* G. C. Greubel, Jun 09 2017 *)
LinearRecurrence[{2, 0, 1, -2, 0, -1, 2, 0, 2, -4}, {0, 0, 1, 2, 4, 9, 18, 36, 72, 144, 288, 576}, 40] (* Harvey P. Dale, Mar 26 2024 *)
PROG
(PARI) Vec(x^2*(1-x)*(x^2+x+1)*(x^6+x^3+1)/((2*x-1)*(2*x^9-x^6+x^3-1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Aug 14 2005
STATUS
approved