login
A111625
n divided by the second lower diagonal of A109626 & 3/2 -> 2.
0
3, 1, 1, 3, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
A sequence of just 1's, 2's and 3's.
a/A111624(n)=1 if n == 0,2 (Mod 3).
a(3n-2): 3,3,3,2,3,2,2,1,3,3,1,2,2,3,3,3,1,2,2,1,1,3,2,1,1,2,3,1,1,3,2,3,2,2,1,2,3,2,2,2,3,3,3,3,2,1,1,3
MATHEMATICA
f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[ a[j], {j, 0, 144}]]; g[n_, m_] := f[n][[m]]; Table[ Ceiling[ n/g[n, n - 2]], {n, 3, 108}]
CROSSREFS
Cf. A111624.
Sequence in context: A367824 A087283 A355924 * A109007 A132951 A366520
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 03 2005
STATUS
approved