login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111595 Triangle of coefficients of square of Hermite polynomials divided by 2^n with argument sqrt(x/2). 16
1, 0, 1, 1, -2, 1, 0, 9, -6, 1, 9, -36, 42, -12, 1, 0, 225, -300, 130, -20, 1, 225, -1350, 2475, -1380, 315, -30, 1, 0, 11025, -22050, 15435, -4620, 651, -42, 1, 11025, -88200, 220500, -182280, 67830, -12600, 1204, -56, 1, 0, 893025, -2381400, 2302020, -1020600, 235494, -29736, 2052, -72 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

This is a Sheffer triangle (lower triangular exponential convolution matrix). For Sheffer row polynomials see the S. Roman reference and explanations under A048854.

In the umbral notation of the S. Roman reference this would be called Sheffer for ((sqrt(1-2*t))/(1-t), t/(1-t)).

The associated Sheffer triangle is A111596.

Matrix logarithm equals A112239. - Paul D. Hanna, Aug 29 2005

The row polynomials (1/2^n)* H(n,sqrt(x/2))^2, with the Hermite polynomials H(n,x), have e.g.f. (1/sqrt(1-y^2))*exp(x*y/(1+y)).

The row polynomials s(n,x):=sum(a(n,m)*x^m,m=0..n), together with the associated row polynomials p(n,x) of A111596, satisfy the exponential (or binomial) convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), n>=0.

The unsigned column sequences are: A111601, A111602, A111777-A111784, for m=1..10.

REFERENCES

R. P. Boas and R. C. Buck, Polynomial Expansions of Analytic Functions, Springer, 1958, p. 41

S. Roman, The Umbral Calculus, Academic Press, New York, 1984, p. 128.

LINKS

G. C. Greubel, Rows n=0..100 of triangle, flattened

FORMULA

E.g.f. for column m>=0: (1/sqrt(1-x^2))*((x/(1+x))^m)/m!.

a(n, m)=((-1)^(n-m))*(n!/m!)*sum(binomial(2*k, k)*binomial(n-2*k-1, m-1)/(4^k), k=0..floor((n-m)/2)), n>=m>=1. a(2*k, 0)= ((2*k)!/(k!*2^k))^2 = A001818(k), a(2*k+1) = 0, k>=0. a(n, m)=0 if n<m.

EXAMPLE

The triangle a(n, m) begins:

n\m       0         1         2          3         4         5       6       7     8    9  10 ...

0:        1

1:        0         1

2:        1        -2         1

3:        0         9        -6          1

4:        9       -36        42        -12         1

5:        0       225      -300        130       -20         1

6:      225     -1350      2475      -1380       315       -30       1

7:        0     11025    -22050      15435     -4620       651     -42       1

8:    11025    -88200    220500    -182280     67830    -12600    1204     -56     1

9:        0    893025  -2381400    2302020  -1020600    235494  -29736    2052   -72    1

10:  893025  -8930250  28279125  -30958200  15961050  -4396140  689850  -63000  3285  -90   1

-------------------------------------------------------------------------------------------------

MATHEMATICA

row[n_] := CoefficientList[ 1/2^n*HermiteH[n, Sqrt[x/2]]^2, x]; Table[row[n], {n, 0, 10}] // Flatten (* Jean-Fran├žois Alcover, Jul 17 2013 *)

PROG

(Python)

from sympy import hermite, Poly, sqrt

def a(n): return Poly(1/2**n*hermite(n, sqrt(x/2))**2, x).all_coeffs()[::-1]

for n in range(0, 11): print a(n) # Indranil Ghosh, May 26 2017

CROSSREFS

Row sums: A111882. Unsigned row sums: A111883.

Cf. A112239 (matrix log).

Sequence in context: A327350 A137452 A158335 * A021478 A115563 A293881

Adjacent sequences:  A111592 A111593 A111594 * A111596 A111597 A111598

KEYWORD

sign,easy,tabl

AUTHOR

Wolfdieter Lang, Aug 23 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 07:28 EST 2020. Contains 332159 sequences. (Running on oeis4.)