The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111593 Triangle of tanh numbers. 7
 1, 0, 1, 0, 0, 1, 0, -2, 0, 1, 0, 0, -8, 0, 1, 0, 16, 0, -20, 0, 1, 0, 0, 136, 0, -40, 0, 1, 0, -272, 0, 616, 0, -70, 0, 1, 0, 0, -3968, 0, 2016, 0, -112, 0, 1, 0, 7936, 0, -28160, 0, 5376, 0, -168, 0, 1, 0, 0, 176896, 0, -135680, 0, 12432, 0, -240, 0, 1, 0, -353792, 0, 1805056, 0, -508640, 0, 25872 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Sheffer triangle associated to Sheffer triangle A060081. For Sheffer triangles (matrices) see the explanation and S. Roman reference given under A048854. In the umbral calculus (see the S. Roman reference) this triangle would be called associated for (1,arctanh(y)). Without the n=0 row and m=0 column and unsigned, this is the Jabotinsky triangle A059419. The inverse matrix of A with elements a(n,m), n,m>=0, is A111594. The row polynomials p(n,x):=sum(a(n,m)*x^m,m=0..n), together with the row polynomials s(n,x) of A060081, satisfy the exponential (or binomial) convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), n>=0. The row polynomials p(n,x) (defined above) have e.g.f. exp(x*tanh(y)). Exponential Riordan array [1, tanh(x)], inverse of [1, arctanh(x)] which is A111594. - Paul Barry, May 30 2010 Also the Bell transform of A155585(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016 LINKS W. Lang, First 10 rows. FORMULA E.g.f. for column m>=0: ((tanh(x))^m)/m!. a(n, m) = coefficient of x^n of ((tanh(x))^m)/m!, n>=m>=0, else 0. a(n, m) = a(n-1, m-1) - (m+1)*m*a(n-1, m+1), a(n, -1):=0, a(0, 0)=1, a(n, m)=0 for n= 0, P(n,x)*t^n/n!), the lowering operator is L = arctanh(d/dx) = d/dx + (1/3)(d/dx)^3 + (1/5)(d/dx)^5 + ..., and the raising operator is R = x [1 - (d/dx)^2], where L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x), since the sequence is a binomial Sheffer sequence. - Tom Copeland, Oct 01 2015 The raising operator R = x - x D^2 in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonal (A002378) comes from -x D^2 x^n = -n * (n-1) x^(n-1). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T. - Tom Copeland, Aug 17 2016 EXAMPLE Binomial convolution of row polynomials: p(3,x)= -2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1, together with those from A060081: s(3,x)= -5*x+x^3; s(2,x)= -1+x^2, s(1,x)= x, s(0,x)= 1; therefore -5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = -2*y+y^3 + 3*x*y^2 + 3*(-1+x^2)*y + (-5*x+x^3). From Paul Barry, May 30 2010: (Start) Triangle begins   1;   0,     1;   0,     0,     1;   0,    -2,     0,     1;   0,     0,    -8,     0,     1;   0,    16,     0,   -20,     0,     1;   0,     0,   136,     0,   -40,     0,     1;   0,  -272,     0,   616,     0,   -70,     0,     1;   0,     0, -3968,     0,  2016,     0,  -112,     0,     1; Production matrix begins   0,   1;   0,   0,   1;   0,  -2,   0,   1;   0,   0,  -6,   0,   1;   0,   0,   0, -12,   0,   1;   0,   0,   0,   0, -20,   0,   1;   0,   0,   0,   0,   0, -30,   0,   1;   0,   0,   0,   0,   0,   0, -42,   0,   1;   0,   0,   0,   0,   0,   0,   0, -56,   0,   1; (End) MAPLE # The function BellMatrix is defined in A264428. BellMatrix(n -> 2^(n+1)*euler(n+1, 1), 9); # Peter Luschny, Jan 26 2016 MATHEMATICA t[0, 0] = 1; t[n_, m_] := Sum[ Binomial[k+m-1, m-1]*(k+m)!*(-1)^(k)*2^(n-k-m)*StirlingS2[n, k+m], {k, 0, n-m}]/m!; Table[t[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[2^(#+1)*EulerE[#+1, 1]&, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *) PROG (Maxima) T(n, m):=if n=0 and m=0 then 1 else sum(binomial(k+m-1, m-1)*(k+m)!*(-1)^(k)*2^(n-k-m)*stirling2(n, k+m), k, 0, n-m)/m!; /* Vladimir Kruchinin, Jun 09 2011 */ (Sage) # The function riordan_array is defined in A256893. riordan_array(1, tanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015 CROSSREFS Row sums: A003723. Unsigned row sums: A006229. Cf. A059419, A060081, A111594. Cf. A002378. Sequence in context: A050327 A075120 A327751 * A111594 A322549 A237996 Adjacent sequences:  A111590 A111591 A111592 * A111594 A111595 A111596 KEYWORD sign,easy,tabl AUTHOR Wolfdieter Lang, Aug 23 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 15:16 EST 2020. Contains 332307 sequences. (Running on oeis4.)