login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111578 Triangle T(n, m) = T(n-1, m-1) + (4m-3)*T(n-1, m) read by rows 1<=m<=n. 7
1, 1, 1, 1, 6, 1, 1, 31, 15, 1, 1, 156, 166, 28, 1, 1, 781, 1650, 530, 45, 1, 1, 3906, 15631, 8540, 1295, 66, 1, 1, 19531, 144585, 126651, 30555, 2681, 91, 1, 1, 97656, 1320796, 1791048, 646086, 86856, 4956, 120, 1, 1, 488281, 11984820, 24604420, 12774510 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

From Peter Bala, Jan 27 2015: (Start)

Working with an offset of 0, this is the exponential Riordan array [exp(z), (exp(4*z) - 1)/4].

This is the triangle of connection constants between the polynomial basis sequences {x^n}n>=0 and { n!*4^n * binomial((x - 1)/4,n) }n>=0. An example is given below.

Call this array M and let P denote Pascal's triangle A007318 then P^2 * M = A225469; P^(-1) * M is a shifted version of A075499.

This triangle is the particular case a = 4, b = 0, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. (End)

LINKS

Table of n, a(n) for n=1..50.

P. Bala, A 3 parameter family of generalized Stirling numbers

FORMULA

From Peter Bala, Jan 27 2015: (Start)

The following formulas assume an offset of 0.

T(n,k) = 1/(4^k*k!)*sum {j = 0..k} (-1)^(k-j)*binomial(k,j)*(4*j + 1)^n.

T(n,k) = sum {i = 0..n-1} 4^(i-k+1)*binomial(n-1,i)*Stirling2(i,k-1).

E.g.f.: exp(z)*exp(x/4*(exp(4*z) - 1)) = 1 + (1 + x)*z + (1 + 6*x + x^2)*z^2/2! + ....

O.g.f. for n-th diagonal: exp(-x/4)*sum {k >= 0} (4*k + 1)^(k + n - 1)*((x/4*exp(-x))^k)/k!.

O.g.f. column k: 1/( (1 - x)*(1 - 5*x)...(1 - (4*k + 1)*x ). (End)

EXAMPLE

The triangle starts in row n=1 as:

1;

1,1;

1,6,1;

1,31,15,1;

Connection constants: Row 4: [1, 31, 15, 1] so

x^3 = 1 + 31*(x - 1) + 15*(x - 1)*(x - 5) + (x - 1)*(x - 5)*(x - 9). - Peter Bala, Jan 27 2015

MATHEMATICA

T[n_, k_] := 1/(4^(k-1)*(k-1)!) * Sum[ (-1)^(k-j-1) * (4*j+1)^(n-1) * Binomial[k-1, j], {j, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 28 2015, after Peter Bala *)

PROG

(Python) def A096038(n, m): ...if n < 1 or m < 1 or m > n: ......return 0 ...elif n <=2: ......return 1 ...else: ......return A096038(n-1, m-1)+(4*m-3)*A096038(n-1, m)

print( [A096038(n, m) for n in range(20) for m in range(1, n+1)] ) # R. J. Mathar, Oct 11 2009

CROSSREFS

Cf. A111577, A008277, A039755, A016234 (3rd column).

Sequence in context: A201461 A265603 A174186 * A166349 A176429 A157155

Adjacent sequences:  A111575 A111576 A111577 * A111579 A111580 A111581

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, Aug 07 2005

EXTENSIONS

Edited and extended by R. J. Mathar, Oct 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 16:43 EDT 2019. Contains 325225 sequences. (Running on oeis4.)