The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111578 Triangle T(n, m) = T(n-1, m-1) + (4m-3)*T(n-1, m) read by rows 1<=m<=n. 7
 1, 1, 1, 1, 6, 1, 1, 31, 15, 1, 1, 156, 166, 28, 1, 1, 781, 1650, 530, 45, 1, 1, 3906, 15631, 8540, 1295, 66, 1, 1, 19531, 144585, 126651, 30555, 2681, 91, 1, 1, 97656, 1320796, 1791048, 646086, 86856, 4956, 120, 1, 1, 488281, 11984820, 24604420, 12774510 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS From Peter Bala, Jan 27 2015: (Start) Working with an offset of 0, this is the exponential Riordan array [exp(z), (exp(4*z) - 1)/4]. This is the triangle of connection constants between the polynomial basis sequences {x^n}n>=0 and { n!*4^n * binomial((x - 1)/4,n) }n>=0. An example is given below. Call this array M and let P denote Pascal's triangle A007318 then P^2 * M = A225469; P^(-1) * M is a shifted version of A075499. This triangle is the particular case a = 4, b = 0, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. (End) LINKS FORMULA From Peter Bala, Jan 27 2015: (Start) The following formulas assume an offset of 0. T(n,k) = 1/(4^k*k!)*sum {j = 0..k} (-1)^(k-j)*binomial(k,j)*(4*j + 1)^n. T(n,k) = sum {i = 0..n-1} 4^(i-k+1)*binomial(n-1,i)*Stirling2(i,k-1). E.g.f.: exp(z)*exp(x/4*(exp(4*z) - 1)) = 1 + (1 + x)*z + (1 + 6*x + x^2)*z^2/2! + .... O.g.f. for n-th diagonal: exp(-x/4)*sum {k >= 0} (4*k + 1)^(k + n - 1)*((x/4*exp(-x))^k)/k!. O.g.f. column k: 1/( (1 - x)*(1 - 5*x)...(1 - (4*k + 1)*x ). (End) EXAMPLE The triangle starts in row n=1 as: 1; 1,1; 1,6,1; 1,31,15,1; Connection constants: Row 4: [1, 31, 15, 1] so x^3 = 1 + 31*(x - 1) + 15*(x - 1)*(x - 5) + (x - 1)*(x - 5)*(x - 9). - Peter Bala, Jan 27 2015 MATHEMATICA T[n_, k_] := 1/(4^(k-1)*(k-1)!) * Sum[ (-1)^(k-j-1) * (4*j+1)^(n-1) * Binomial[k-1, j], {j, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Peter Bala *) PROG (Python) def A096038(n, m): ...if n < 1 or m < 1 or m > n: ......return 0 ...elif n <=2: ......return 1 ...else: ......return A096038(n-1, m-1)+(4*m-3)*A096038(n-1, m) print( [A096038(n, m) for n in range(20) for m in range(1, n+1)] ) # R. J. Mathar, Oct 11 2009 CROSSREFS Cf. A111577, A008277, A039755, A016234 (3rd column). Sequence in context: A201461 A265603 A174186 * A166349 A176429 A157155 Adjacent sequences:  A111575 A111576 A111577 * A111579 A111580 A111581 KEYWORD nonn,tabl AUTHOR Gary W. Adamson, Aug 07 2005 EXTENSIONS Edited and extended by R. J. Mathar, Oct 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 06:40 EST 2020. Contains 338678 sequences. (Running on oeis4.)