login
Triangle read by rows: row n contains n terms of the arithmetic progression having first term 1 and common difference 2[n^(n-1)-1]/(n-1).
2

%I #3 Mar 30 2012 17:36:06

%S 1,1,3,1,9,17,1,43,85,127,1,313,625,937,1249,1,3111,6221,9331,12441,

%T 15551,1,39217,78433,117649,156865,196081,235297,1,599187,1198373,

%U 1797559,2396745,2995931,3595117,4194303,1,10761681,21523361,32285041

%N Triangle read by rows: row n contains n terms of the arithmetic progression having first term 1 and common difference 2[n^(n-1)-1]/(n-1).

%C Common difference of the row n arithmetic progression = A093461(n) (n>=2). Last term in row n = A093460(n). Sum of terms in row n = n^n=A000312(n).

%F T(1, 0)=1; T(n, k)=1+2k[n^(n-1)-1]/(n-1) if n>=2 and 0<=k<n.

%e Triangle starts:

%e 1;

%e 1,3;

%e 1,9,17;

%e 1,43,85,127;

%p T:=proc(n,k) if n=1 and k=0 then 1 elif n>1 and k<n then 1+2*k*(n^(n-1)-1)/(n-1) else 0 fi end: for n from 1 to 9 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form

%Y Cf. A093460, A093461, A000312.

%K nonn,tabl

%O 1,3

%A _Emeric Deutsch_, based on Amarnath Murthy's sequence A093460, A093461, Aug 07 2005