%I #57 Sep 06 2024 22:23:29
%S 1,1,1,1,1,2,1,1,3,6,1,1,4,13,24,1,1,5,22,71,120,1,1,6,33,148,461,720,
%T 1,1,7,46,261,1156,3447,5040,1,1,8,61,416,2361,10192,29093,40320,1,1,
%U 9,78,619,4256,23805,99688,273343,362880,1,1,10,97,876,7045,48096,263313
%N Square table, read by antidiagonals, where the g.f. for row n+1 is generated by: x*R_{n+1}(x) = (1+n*x - 1/R_n(x))/(n+1) with R_0(x) = Sum_{n>=0} n!*x^n.
%H A. N. Stokes, <a href="https://doi.org/10.1017/S0004972700005219">Continued fraction solutions of the Riccati equation</a>, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
%F T(n, 0) = 1, T(0, k) = k!, otherwise for n>=1 and k>=1:
%F T(n, k) = (T(n-1, k+1) - T(n-1, k))/n - Sum_{j=1..k-1} T(n, j)*T(n-1, k-j).
%F T(n, k) = (k/n)*[x^k] log(Sum_{m=0..k} (n-1+m)!/(n-1)!*x^m).
%F T(n, k) = Sum_{j = 0..k} A089949(k, j)*n^(k-j). - _Philippe Deléham_, Aug 08 2005
%F R_n(x) = -((n-1)!/n)/Sum_{i>=1} (i+n-2)!*x^i, n > 0. - _Vladeta Jovovic_, May 06 2006
%F G.f. of row R may be expressed by the continued fraction: W(0), where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1+R)/( x*(k+1+R) - 1/W(k+1) ))). - _Sergei N. Gladkovskii_, Aug 26 2013
%F Conjecture: T(n, k) = b(2^(k-1) - 1, n) for k > 0 with T(n, 0) = 1 where b(n, m) = b(floor(n/2), m) + b(floor((2n - 2^A007814(n))/2), m) + m*b(A025480(n-1), m) for n > 0 with b(0, m) = 1. - _Mikhail Kurkov_, Dec 16 2021
%F From _Peter Bala_, Jul 11 2022: (Start)
%F O.g.f. for row n, n >= 1: R(n,x) = ( Sum_{k >= 0} (n+k)!/n!*x^k )/( Sum_{k >= 0} (n-1+k)!/(n-1)!*x^k ).
%F R(n,x)/(1 - n*x*R(n,x)) = Sum_{k >= 0} (n+k)!/n!*x^k.
%F For n >= 0, R(n,x) satisfies the Riccati equation x^2*d/dx(R(n,x)) + n*x*R(n,x)^2 - (1 + (n-1)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
%F Apply Stokes 1982 to find that for n >= 0, R(n,x) = 1/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - (n+3)*x/(1 - 4*x/(1 - (n+4)*x/(1 - ...))))))))), a continued fraction of Stieltjes type. (End)
%e Table begins:
%e 1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...
%e 1, 1, 3, 13, 71, 461, 3447, 29093, 273343, ...
%e 1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, ...
%e 1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, ...
%e 1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, ...
%e 1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, ...
%e 1, 1, 8, 78, 876, 10956, 149472, 2195208, 34398288, ...
%e 1, 1, 9, 97, 1193, 16241, 240057, 3804353, 64092553, ...
%e 1, 1, 10, 118, 1576, 23176, 368560, 6262768, 112784896, ...
%e Rows are generated by logarithms of factorial series:
%e log(1 + x + 2*x^2 + 6*x^3 + 24*x^4 + ... n!*x^n + ...) = x + (3/2)*x^2 + (13/3)*x^3 + (71/4)*x^4 + (461/5)*x^5 + ...
%e (1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...) = x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
%e (1/3)*log(1 + 3*x + 12*x^2 + 60*x^3 + ... + ((n+2)!/2!)*x^n + ...) = x + (5/2)*x^2 + (33/3)*x^3 + (261/4)*x^4 + (2361/5)*x^5 +...
%e G.f. of row n may be expressed by the continued fraction:
%e R_n(x) = 1/(1+n*x - (n+1)*x/(1+(n+1)*x - (n+2)*x/(1+(n+2)*x -...
%e or recursively by: R_n(x) = 1/(1+n*x - (n+1)*x*R_{n+1}(x)).
%p T := (n, k) -> coeff(series(hypergeom([n+1, 1], [], x)/hypergeom([n, 1], [], x), x, 21), x, k):
%p #display as a sequence
%p seq(seq(T(n-k, k), k = 0..n), n = 0..10);
%p # display as a square array
%p seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # _Peter Bala_, Jul 16 2022
%t T[n_, k_] := T[n, k] = Which[n < 0 || k < 0, 0, k == 0 || k == 1, 1, n == 0, k!, True, (T[n - 1, k + 1] - T[n - 1, k])/n - Sum[T[n, j]*T[n - 1, k - j], {j, 1, k - 1}]]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 18 2018 *)
%o (PARI) {T(n,k)=if(n<0||k<0,0,if(k==0||k==1,1,if(n==0,k!, (T(n-1,k+1)-T(n-1,k))/n-sum(j=1,k-1,T(n,j)*T(n-1,k-j)))))}
%o for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
%o (PARI) {T(n,k)=if(n<0||k<0,0,if(k==0,1,if(n==0,k!, k/n*polcoeff(log(sum(m=0,k,(n-1+m)!/(n-1)!*x^m)),k))))}
%o for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
%Y Cf: A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111533 (row 6), A111534 (diagonal).
%Y Similar recurrences: A124758, A243499, A284005, A329369, A341392.
%K nonn,tabl
%O 0,6
%A _Paul D. Hanna_, Aug 06 2005