login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111459 Generalized Somos-4 sequence with a(n-2)^2 replaced by a(n-2)^5. 3
1, 1, 1, 1, 2, 3, 35, 313, 26261407, 1001689887346, 356879751557595054813966522072161803, 3221974575788016845202611315068840860244866942009716269469 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..14

S. Fomin and A. Zelevinsky, The Laurent Phenomenon, Advances in Applied Mathematics 28 (2002), 119-144.

D. Gale, Tracking the Automatic Ant, Springer (1998), pp. 1-5.

D. Gale, The strange and surprising saga of the Somos sequences, Math. Intelligencer 13(1) (1991), pp. 40-42.

D. Gale, Somos sequence update, Mathematical Intelligencer 13 (4) (1991), 49-50.

FORMULA

a(n) = (a(n-1)*a(n-3) + a(n-2)^5)/a(n-4) for n >= 4 with a(0) = a(1) = a(2) = a(3) = 1. As n tends to infinity, log(log(a(n)))/n tends to (1/2)*log((5 + sqrt(21))/2) or about 0.783.

MAPLE

L[0]:=0; L[1]:=0; L[2]:=0; L[3]:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-5*L[n+2]))+5*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: this calculates L[n]=ln(a[n]) and illustrates slow convergence of ln(ln(a[n]))/n to 0.783...

CROSSREFS

Cf. A006720, A072876, A072877.

Sequence in context: A199696 A234423 A165448 * A042663 A072291 A325500

Adjacent sequences:  A111456 A111457 A111458 * A111460 A111461 A111462

KEYWORD

nonn

AUTHOR

Andrew Hone, Nov 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 12:29 EDT 2019. Contains 325180 sequences. (Running on oeis4.)