

A111422


a(n) = nth decimal digit of the fraction formed by the cube root of the nth prime.


0



2, 4, 9, 9, 8, 4, 5, 4, 9, 6, 9, 5, 7, 2, 4, 0, 4, 5, 0, 0, 6, 3, 7, 8, 4, 6, 7, 9, 3, 6, 7, 7, 8, 2, 5, 9, 0, 6, 1, 8, 8, 8, 3, 9, 1, 6, 6, 9, 9, 9, 4, 4, 3, 7, 7, 2, 4, 4, 7, 6, 7, 1, 8, 4, 6, 6, 9, 0, 6, 5, 7, 9, 8, 9, 7, 5, 2, 4, 5, 1, 7, 0, 9, 4, 7, 0, 6, 3, 1, 7, 3, 9, 3, 7, 0, 9, 4, 0, 9, 7, 0, 9, 7, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


REFERENCES

John D. Barrow, The Infinite Book, Pantheon Book New York 2005, pp. 6976.


LINKS

Table of n, a(n) for n=2..106.


EXAMPLE

The 2nd prime is 3. 3^(1/3) = 1.442249..., The 2nd entry after the decimal point is 4 the 2nd entry in the table.


MATHEMATICA

f[n_] := Block[{rd = RealDigits[(Prime@n)^(1/3), 10, 111]}, rd[[1, n + rd[[2]]]]]; Array[f, 105] (* Robert G. Wilson v *)


PROG

(PARI) cantor(n, r, i) = \Cantor proof of a nondenumerable infinity { local(x, y, j=2, z); forprime(x=2, n, y=eval(Vec(Str(frac(x^(1/r))))); j++; z=(y[j]+i) % 10; print1(z", "); ); }


CROSSREFS

Sequence in context: A163299 A198679 A244285 * A279035 A076661 A258710
Adjacent sequences: A111419 A111420 A111421 * A111423 A111424 A111425


KEYWORD

easy,nonn,base


AUTHOR

Cino Hilliard, Nov 13 2005


EXTENSIONS

More terms from Robert G. Wilson v, Nov 17 2005


STATUS

approved



