login
A111397
Composite numbers (modulo 3).
1
1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 2, 0, 1, 0, 1, 2, 0, 1, 0, 2
OFFSET
1,3
COMMENTS
If the terms of this sequence are interpreted as the base-3 expansion of a real number, its value is 0.4124999703972179190135867434954940067125524729635148630103267345... and its continued fraction expansion is 0, 2, 2, 2, 1, 4, 5278, 131, 4, 2, 2, 2, 2, 1, 24, 12, 1, 1, 7, 552, 1, 2, 1, ... with increasing partial quotients 2, 4, 5278, 66292, 274715, 420778, 625399, ...
FORMULA
a(n) == A002808(n) (mod 3).
MATHEMATICA
Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n]; Table[ Mod[Composite[n], 3], {n, 105}]
CROSSREFS
Sequence in context: A035177 A194591 A070105 * A131743 A357860 A147648
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Nov 11 2005
STATUS
approved