The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111384 a(n) = binomial(n,3) - binomial(floor(n/2),3) - binomial(ceiling(n/2),3). 5
 0, 0, 0, 1, 4, 9, 18, 30, 48, 70, 100, 135, 180, 231, 294, 364, 448, 540, 648, 765, 900, 1045, 1210, 1386, 1584, 1794, 2028, 2275, 2548, 2835, 3150, 3480, 3840, 4216, 4624, 5049, 5508, 5985, 6498, 7030, 7600, 8190, 8820, 9471, 10164, 10879, 11638, 12420, 13248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) is also floor(n/2)*ceiling(n/2)*(n-2)/2. - James R. Buddenhagen, Nov 11 2009 From Gary W. Adamson, Mar 03 2010: (Start) Starting with 1 = M * [1, 2, 3, ...] where M = a matrix with (1, 4, 7, 10, ...) in every column, shifted down twice for columns > 1. The row sums of triangle M = A006578: (1, 4, 8, 14, 21, 30, 40, ...). (End) a(n) is the maximum number of open triangles in a simple, undirected graph with n vertices. - Eugene Lykhovyd, Oct 20 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 P. Keevash et al., The Turan number of the Fano plane, Combinatorica, 25 (2005), 561-574. Artem Pyatkin, Eugene Lykhovyd, Sergiy Butenko, The maximum number of induced open triangles in graphs of a given order, Optimization Letters (2018). Adityanarayanan Radhakrishnan, Liam Solus, Caroline Uhler, Counting Markov Equivalence Classes by Number of Immoralities, arXiv preprint arXiv:1611.07493 [math.CO], 2016-2017. Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1). FORMULA From R. J. Mathar, Mar 18 2010: (Start) a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). G.f.: x^3*(1+2*x)/ ((1+x)^2 * (x-1)^4). (End) a(n) = A006918(n-2) + 2*A006918(n-3). - R. J. Mathar, Jan 20 2018 MAPLE seq(floor(n/2)*ceil(n/2)*(n-2)/2, n=0..50); # James R. Buddenhagen, Nov 11 2009 MATHEMATICA LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 0, 0, 1, 4, 9}, 50] (* Vincenzo Librandi, Oct 20 2018 *) PROG (PARI) a(n)=floor(n/2)*ceil(n/2)*(n-2)/2 \\ Charles R Greathouse IV, Oct 16 2015 (MAGMA) [Binomial(n, 3) - Binomial(Floor(n/2), 3) - Binomial(Ceiling(n/2), 3): n in [0..50]]; // Vincenzo Librandi, Oct 20 2018 (GAP) a:=[0, 0, 0, 1, 4, 9];; for n in [7..50] do a[n]:=2*a[n-1]+a[n-2]-4*a[n-3]+a[n-4]+2*a[n-5]-a[n-6]; od; a; # Muniru A Asiru, Oct 21 2018 CROSSREFS Cf. A006578, A006918. Sequence in context: A008146 A038098 A299274 * A196039 A238091 A301017 Adjacent sequences:  A111381 A111382 A111383 * A111385 A111386 A111387 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 10 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 12:37 EST 2020. Contains 338639 sequences. (Running on oeis4.)