login
A111378
Squares that are equal to the sum of two Fibonacci numbers.
3
0, 1, 4, 9, 16, 36, 144, 1600, 14930496
OFFSET
1,3
COMMENTS
Any further terms have more than 10,000 digits. - Charles R Greathouse IV, Sep 16 2015
MAPLE
Fibs:= {seq(combinat:-fibonacci(i), i=0..100)}:
sort(convert(select(issqr, {seq(seq(Fibs[i]+Fibs[j], j=1..i), i=1..100)}), list)); # Robert Israel, Jun 03 2024
MATHEMATICA
Select[Union[Total/@Subsets[Fibonacci[Range[0, 100]], {2}], Table[Fibonacci[n]*2, {n, 0, 100}]], IntegerQ[Sqrt[#]]&] (* James C. McMahon, Jun 03 2024 *)
PROG
(PARI) list(lim)=my(F=List(), v=List([0, 1]), n=1, t); while((t=fibonacci(n++))<=lim, listput(F, t)); F=Vec(F); for(i=1, #F, for(j=i, #F, if(issquare(t=F[i]+F[j]), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Sep 16 2015
CROSSREFS
Squares in A084176 (or A059389). Cf. A000045.
Sequence in context: A363657 A231180 A250029 * A106313 A219355 A291216
KEYWORD
nonn
AUTHOR
Giovanni Teofilatto, Nov 09 2005
EXTENSIONS
1600 from Jonathan Vos Post, Nov 11 2005
14930496 from N. J. A. Sloane, Nov 11 2005
STATUS
approved