login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111253 a(n) is the number of ways the set {1^4, 2^4, ..., n^4} can be partitioned into two sets of equal sums. 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 8, 9, 0, 0, 16, 50, 0, 0, 212, 255, 0, 0, 1396, 2994, 0, 0, 14529, 22553, 0, 0, 138414, 236927, 0, 0, 1227670, 2388718, 0, 0, 13733162, 23214820, 0, 0, 140197641, 263244668, 0, 0, 1596794975, 2830613464, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,19

COMMENTS

a(n)=0 when n == 1 or 2 (mod 4).

LINKS

Table of n, a(n) for n=1..58.

FORMULA

a(n) is half the coefficient of x^0 in product_{k=1..n} x^(k^4)+x^(k^-4).

MAPLE

b:= proc(n, i) option remember; local m;

      m:= (-1+(10+(15+6*i)*i)*i^2)*i/30;

      `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i^4), i-1) +b(n+i^4, i-1)))

    end:

a:= n-> `if`(irem(n-1, 4)<2, 0, b(n^4, n-1)):

seq(a(n), n=1..38);  # Alois P. Heinz, Oct 30 2011

MATHEMATICA

d = {1, 1}; nMax=50; zeroLst = {0}; Do[p = n^4; d = PadLeft[d, Length[d] + p] + PadRight[d, Length[d] + p]; If[1 == Mod[Length[d], 2], AppendTo[zeroLst, d[[(Length[d] + 1)/2]]], AppendTo[zeroLst, 0]], {n, 2, nMax}]; zeroLst/2 (* T. D. Noe, Oct 31 2005 *)

p = 1; t = {}; Do[p = Expand[p(x^(n^4) + x^(-n^4))]; AppendTo[t, Select[p, NumberQ[ # ] &]/2], {n, 30}]; t

CROSSREFS

Cf. A058377, A083527, A113263.

Sequence in context: A213153 A132038 A087495 * A021533 A073242 A217597

Adjacent sequences:  A111250 A111251 A111252 * A111254 A111255 A111256

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Oct 31 2005

EXTENSIONS

a(51)-a(54) from T. D. Noe, Nov 01 2005

Corrected a(51)-a(52) and extended up to a(58) by Alois P. Heinz, Oct 31 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.