login
A111185
Let f(k) denote the largest prime factor of k which is not a palindrome. Sequence gives numbers k such that the sum of the factorials of the digits of k is equal to f(k) reversed.
1
143, 541, 2105, 2444, 3431, 4144, 4233, 4301, 4440, 10234, 12243, 12341, 20313, 22320, 30422, 34030, 34144, 35140, 46003, 52100, 53013, 102613, 106312, 112413, 113162, 120032, 134046, 200340, 202124, 203112, 210304, 211203, 211232, 212004
OFFSET
1,1
EXAMPLE
2105 = 5*'421' and 2! + 1! + 0! + 5! = 124.
MATHEMATICA
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; np[n_] := (n != r[n]); f[n_] := Plus @@ Map[ #!&, IntegerDigits[n]]; Do[l = Select[First /@ FactorInteger[n], np]; If[Length[l] > 0, k = r[Max[l]]; If[k == f[n], Print[n]]], {n, 1, 10^6}] (* Ryan Propper, Oct 19 2005 *)
CROSSREFS
See A074301 for another version.
Sequence in context: A213337 A156963 A126703 * A074301 A156635 A354483
KEYWORD
base,nonn
AUTHOR
Jason Earls, Sep 21 2002
EXTENSIONS
More terms from Ryan Propper, Oct 19 2005
STATUS
approved