login
A111145
Length of the Cunningham chain initiated by the n-th Sophie Germain prime.
1
5, 2, 4, 3, 2, 2, 3, 2, 2, 6, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2
OFFSET
1,1
COMMENTS
If a(n) is a high-water mark of this sequence, then A057331(a(n)) is the first term of the first Cunningham sequence of length a(n). For example, a(10)=6 is a high-water mark of this sequence and A057331(a(10))=89 is the first term of the first Cunningham sequence of length 6.
EXAMPLE
a(10)=6 because 89, the 10th Sophie Germain prime, is the first term of the Cunningham chain 89, 179, 359, 719, 1439, 2879, which consists of 6 terms.
MATHEMATICA
lst=Select[Prime[Range[1000]], PrimeQ[2#+1]&]; Table[p=lst[[i]]; k=1; While[p=2p+1; PrimeQ[p], k++ ]; k, {i, Length[lst]}] - T. D. Noe, Jun 06 2006
ccl[n_]:=Length[NestWhileList[2#+1&, n, PrimeQ[2#+1]&]]; ccl/@Select[ Prime[ Range[1000]], PrimeQ[2#+1]&] (* Harvey P. Dale, Sep 29 2018 *)
CROSSREFS
Sequence in context: A372286 A368690 A083241 * A249920 A021660 A266122
KEYWORD
nice,nonn
AUTHOR
Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 18 2005
EXTENSIONS
More terms from T. D. Noe, Jun 06 2006
STATUS
approved