login
A111136
a(n) = Sum_{k=1..n} Fibonacci(prime(k)).
2
1, 3, 8, 21, 110, 343, 1940, 6121, 34778, 549007, 1895276, 26053093, 191633234, 625127671, 3596342744, 56912633917, 1013634659958, 3518365441919, 48463935654772, 356525456824901, 1163040989874294, 15635375014550515, 114830228109306012, 1894809644114020201
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n} A000045(A000040(i)). - Wesley Ivan Hurt, Feb 02 2014
EXAMPLE
The first 3 primes are 2, 3 and 5. So a(3) = F(2)+F(3)+F(5) = 1+2+5 = 8.
MAPLE
with(numtheory); with(combinat); A111136:=n->sum(fibonacci(ithprime(i)), i=1..n); seq(A111136(n), n=1..30); # Wesley Ivan Hurt, Feb 02 2014
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+
(<<0|1>, <1|1>>^ithprime(n))[1, 2])
end:
seq(a(n), n=1..25); # Alois P. Heinz, Jun 24 2022
MATHEMATICA
f[n_] := Sum[ Fibonacci[ Prime[i]], {i, n}]; Array[f, 22] (* Robert G. Wilson v *)
CROSSREFS
Partial sums of A030426.
Sequence in context: A361574 A353424 A156291 * A374340 A348636 A063937
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 17 2005
EXTENSIONS
More terms from Robert G. Wilson v, Oct 21 2005
STATUS
approved